

Kiev, 05.10.2011

FICHTNER

Program

Due Diligence of a Small Hydropower Plant, Case Study Las Pizarras HPP, Peru

Economical Optimization of Installed Capacity of a Small Hydropower Plant Case Study Gegharot SHPP, Armenia

Chances and Risks from Pre-Feasibility Study to Operation

Questions and Discussions

Planning and Engineering

Planning	 Hydropower is using natural head of river reaches, structures are build in nature. Therefore, natural site conditions have to be considered accordingly. Each hydropower plant is unique, there is no standardization (except for mini and micro hydropower market segment with total capacity < 5 MW) Site conditions are: Topography → Head Hydrology → Flow Sediments Geology Seismicity Social and Ecological conditions
Site Conditions	 Topography: Survey works on ground are necessary for entire structures, impact on bill of quantities Hydrology: long term recording of nearby gauging stations are useful, at least 15 years, correlation with other stations possible, various software packages, measurements on site sometimes necessary, hydrological risk remains Sediments: sediment laden flow important for project layout, sedimentation of daily storages or storages, differentiation in impacts depending on head of plant, consideration of sediment trap for reduction of abrasion effects on turbines, etc., measurements on site recommended, sediment risk remains Regional understanding of geology important for entire project, site investigations with drillings and laboratory tests important for design of foundations and underground conditions.

Planning and Engineering

During a study various layout alternatives shall be identified, developed and assessed in terms of power and energy output and corresponding costs. The aim is to determine the most economical layout causing minor environmental and social impacts

- Various structures shall be optimized during the stage of feasibility study (storage, tunnel diameter, penstock diameter, number and size of units, etc.)
- The design discharge shall be optimized in order to maximize the Net present value of the project, this very much depends on the tariff structure for power and energy generation

Optimization

Engineering

- The depth of engineering depends on the level of the study, the physical contingencies decrease with detail of the study from about 30% to about 5%.
 - Reconnaissance Level
 - Due Diligence
 - Pre-Feasibility Level
 - Feasibility Level
 - Tender Design
 - Detailed Design
- Ideally a project goes through all development stages

Comparison of Design Stages

Figure 1: Design stages for hydropower planning

CASE STUDY LORIBERD HPP

Outline Loriberd HPP

Background **Review and Analysis of Original Scheme Environemental Impact Assessment** Layout Alternatives **Optimization of Design** Availability of Water Power and Energy Potential **Project Quantities and Costs Project Implementation** Tashir SHPP **Economic Analysis Financial Analysis** Summary and Conclusion

Background

Planning since 1960's:

Concentrated Fall Development with large multipurpose dam

Loriberd Cascade Project with 3 separate HPP's

Last update in 1992

EU-TACIS:

Background

Cascade Project:

Loriberd SHPP

• (1.8 MW, 6.8 GWh, ca. 9 MUS\$) Loriberd HPP I

(8.8 MW, 29.8 GWh, ca. 70 MUS\$)
 Loriberd HPP II

• (51 MW, 180 GWh, ca. 70 MUS\$)

Total of the Installed Capacity

Power	66.6 MW
Energy	216.6 GWh
Invest. Costs	149 MUS\$

Review of Original Scheme

Old Layout:

Review of Original Scheme

Loriberd HPP I:

increase of discharge by 1 m³/s for Loriberd HPP II add. 15 GWh for add. 14.5 MUS\$ Gargar SHPP

Loriberd SHPP:

complex flow diversion (Tashir & Urut Rivers) bulk of energy of Tashir River use of Loriberd Irrigation Canal as headrace canal reduction of costs from 9 MUS\$ to 1 MUS\$ reduction of energy from 6.8 GWh to 3.9 GWh

Environmental Impact Assessment

Main Environmental Impacts

Physical:

- excavation and dump of material
- dust, noise by construction works

Biological:

- temp. use of farm land (680 farmers)
- wildlife mostly in woods

Minimum Ecological Flow:

Magnitude

Economic Evaluation

- Investment WWTP: appr. 2000 TUS\$
- loss of benefits appr. 12000 TUS\$ (24 GWh/a)

Socio-Economics:

- no resettlement
- perm. loss of part of land (25 farmers)
- temp. loss of part of income (appr. 680 farmers, R/S of Lori Plateau)

Mitigation Measures acc. to WCD Guidelines

Layout Alternatives

Four Basic Layouts Loriberd HPP Run-of-River

Results of Analysis	Old Design	Free-flow Tunnel	Pressure Tunnel	Penstock in two sta-	Penstock in one
Installed Capacity [MW]	66.6	52.5	53.8	49.4	48.8
Mean Annual Energy Producti- on [GWh]	216.6	208.2	212.8	193.1	203.7
Spec. Investment Costs [TUS\$/MW]	2237	1614	2121	2410	2414
Ranking	3	1	2	4	5

Optimization of Design

Free - Flow Tunnel using Pondage Capacity for Peaking Design Discharge

Alternative: Gas Turbine Plant - 75 MW value of energy and capacity output

Dzoraget HPP and Gargar River downstream

Optimization of Design

Peaking Characteristics

3 hours continous operation

Design

Weir with gates for flushing of sediments Sandtrap

• Cost of none implementation:

2578 TUS\$ (O&M) + 11214 TUS\$ (23 GWh energy loss) 13792 TUS\$

Cost of implementation:

4500 TUS\$

Shift of daily storage pond Economic penstock diameter Shift of powerhouse location

Availability of Water

Irrigation

Lori & Kirov Canals

- Future demand based on actual capacities of canals
- Avoiding pumping for irrigation

Availability of Water

Potable water supply

Cities/Villages

- Future demand based on actual population development 2003-2008: -1.0% 2008-2013: +0.5% 2013-2023: +1.0%
- KfW-Study Lori-Shirak: use of Kamenka spring (250 l/s) in future

Demand	Year			
Town/Village	2003	2008	2013	2023
Stepanavan City	0.115	0.111	0.114	0.125
Stepanavan Villages	0.184	0.177	0.182	0.201
Tashir City	0.065	0.062	0.064	0.070
Tashir Villages	0.191	0.183	0.188	0.207
Alaverdi	0.117	0.113	0.116	0.128
Alaverdi Villages	0.040	0.038	0.039	0.043
Subsum	0.712	0.684	0.633	0.774
Vanadzor (KfW)	1.069	0.814	0.274	0.303
Total Sum	1.781	1.498	0.907	1.077

Potable Water Demand

Availability of Water

Existing Small Hydropower Plants

Amrakits SHPP I

- Power generation shall be stopped after 2011
- Compensation foreseen: 2011 2016

Power and Energy Potential

Final Technical Data

Storage Plant

- Design Discharge: 25 m3/s
- Gross Head: 341 m
- Net Head: 302.53 m
- Installed capacity: 65.3 MW
- Peaking time: 3 h continuosly
- Peak energy: 71.4 GWh
- Off-peak energy: 131.5 GWh
- Total energy: 202.9 GWh
- Plant factor: 35%

Run-of-River Plant

- Design Discharge: 20 m3/s
- Net Head: 311.75 m
- Installed capacity: 54.3 MW
- Energy: 210.1 GWh
- Plant factor: 44%

Project Quantities and Costs Loriberd HPP

Exchange R	ate:			
55	0 DRAM = 1 US\$, Price Index July 2004	LOCAL	FOREIGN	TOTAL
ITEM	DESCRIPTION	[TUS\$]	[TUS\$]	[TUS\$]
	I Environment Mitigation Costs	600	150	750
	I Preliminary and General	1,745	436	2,181
	II Civil Works	34,394	8,598	42,992
	Subtotal I - III	36,739	9,185	45,923
	V Hydraulic Steel Structures	3,794	15,176	18,970
	V Hydromechanical Equipment	1,758	7,034	8,792
	/I Electrical Equipment	2,544	10,176	12,720
V V	II Transmission Line	864	216	1,080
	Subtotal I-VII	45,699	41,786	87,485
V	II Physical Contingencies			
	5 % of Preliminary Works	87	22	109
	5 % of Civil Works	1,720	430	2,150
	5 % of Hydraulic Steel Structures	190	759	948
	5 % of Hydromechanical Equipment	88	352	440
	5 % of Electrical Equipment	127	509	636
	5 % of Transmission Line	43	11	54
	Subtotal VIII	2,255	2,082	4,337
	X Engineering & Supervision			
7.	5 % of Invest. Cost (Subtotal I-VII)	1,968	4,593	6,561
	X Client's Cost			
1.	5 % of Invest. Cost (Subtotal I-VII)	394	919	1,312
2	(I Miscelleneous			
	Compensation SHPP's, Model Test, WWTP Step.	2,846		2,846
X	II Total Base Cost	53,162	49,380	102,542
X	II Duties			
1	0 % on Imported Goods	3,423		3,423
XI	V Total Project Cost	56,585	49,380	105,965

Project Implementation

Time Schedule

Activity		20	005			20	006			20	07			20	80			20	09			20	10	
	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
Preconstruction																								
Construction																								
Civil Works																								
Headworks																								
Tunnel																								
Daily Regulation Pond																								
Penstock/Pressure Shaft																								
Powerhouse																								
Hydromechanical Equipment																								
Electrical Equipment																								
Testing and Commissioing																								
Tashir SHPP																								

Tunnel:

- drilling and blasting: 29 months
- use of TBM: 20 months, Cost Reduction of appr. 25% (7-8 MUS\$)

Tashir SHPP:

no construction works during irrigation period

Commissioning end of 2010

Tashir SHPP

Project Layout

Existing structures: headworks - headrace canal (Lori Irrigation Canal) New structures: headpond - penstock - powerhouse - tailrace

Energy Potential

P = 700 kW

- E = 3.9 GWh
 - reduced energy during irrigation
 - appr. 31 GWh at Loriberd HPP gained through Tashir flows

Important Issues

Compensation of Agarak SHPP Investment Costs = 1000 TUS\$

Possible interference with downstream water spring (distance 300 m)

Financial Analysis

Dynamic Production Cost

Assumptions	Peaking	RoR			
 Investment Cost [MUS\$] 	107.01	99.32			
 incl. Price Conting. [MUS\$] 	111.33	103.33			
 Financing Requirements incl. Fees and IDC [MUS\$] O&M Cost [% of direct cost] Net Energy Production [GWh] 	124.3 2%	115.2 2%			
(Internal Consump. 1%,TL 2%)	200.7	205.9			
 Lifetime Civil Works [a] 	50	50			
 Lifetime Equipment [a] 	25	25			
Results (Single Tariff) Disc	count Rate	5%	8%	10%	12%
DPC Peaking		4.8	6.6	7.8	9.2
DPC RoR		4.4	5.9	7.1	8.3
Sensitivity Analysis for Peaking Ca	se				
HPP (without Tas	shir SHPP)	5.6	7.6	9.1	10.8
HPP (without wa	ter of SHPPs)	6.0	8.2	9.8	11.5

⇒ Project has to be implemented with Tashir SHPP and with water of existing SHPPs

Financial Analysis

Internal Rate of Return

Tariff [c/kWh]	4.5	6.0	8.0	10.0
IRR Peaking (without peaking tariff)	4.3%	7.1%	10.3%	13.1%
IRR Peaking (double of base tariff)	7.2%	10.4%	14.1%	17.4%
IRR RoR	5.3%	8.2%	11.5%	14.5%

Financing assumptions:

- debt/equity ratio 80/20
- interest rate 6.5%
- repayment period 10 years, grace period during construction
- CO₂-avoidance costs not included

Energy demand shows necessity of peaking capacity. Adjustment of tariff is required.

Private investor would expect appr. 20% return on equity

Summary and Conclusion

Loriberd Hydropower Development

Project technical feasible

Most economic new hydropower project in Armenia / Caucasus Region

 Basic figures:
 66.0 MW
 206.8 GWh
 124.3 MUS\$

Investment Costs comparable to similar projects in international context

Financial Analysis

DPC comparable to new thermal peaking plants

Peaking Operation Recommended

Role of Project

Important renewable energy project for Armenian energy sector

Contribution to reduced import dependency

Contribution to closure of Medzamor NPP